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Abstract Eustasy and glacio- and hydro-isostatic adjustment
are the main drivers of regional variability of Holocene rela-
tive sea-level (RSL) records. These regional variations in
Holocene RSL influence the preservation of coastal wetland
stratigraphic records of prehistoric earthquakes along subduc-
tion zone coasts. The length and completeness of prehistoric
earthquake records is intrinsically linked to the accommoda-
tion space provided by gradually rising (<3 mm/year)
Holocene RSL. In near-field regions that were located beneath
northern hemisphere ice sheets (e.g., western Vancouver
Island), RSL fall from a mid-Holocene highstand has limited
prehistoric earthquake records to the last 1 ka. In intermediate
field regions (e.g., southern Washington and central Oregon),
gradual RSL rise over the last ∼7 ka has preserved widespread
records of prehistoric earthquakes. In far-field regions (e.g.,
Sumatra, Chile, and Japan), fragmentary stratigraphic

evidence of prehistoric earthquakes has been preserved only
during periods of gradual RSL rise prior to a mid-Holocene
highstand, or during the last 1–3 ka, when RSL was within
2 m of modern sea level, and thus within the tidal frame.

Keywords Relative sea level . Glacio-isostatic adjustment .

Prehistoric earthquakes . Accommodation space . Coastal
wetland stratigraphy . Subduction zone

Introduction

Holocene relative sea-level (RSL) change is the net effect of
eustatic factors (land ice mass change and ocean thermal ex-
pansion), regional glacio- and hydro-isostatic adjustment
(GIA), ocean dynamics, tectonic uplift or subsidence, and other
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local factors that produce complex patterns of RSL rise or fall
over space and time [1–3]. These complex regional patterns of
RSL change have influenced the deposition and preservation of
sediment representing coastal wetland environments (e.g., tidal
marshes and mangroves) that preserve stratigraphic records of
Holocene RSL change [4–6]. The formation and preservation
of coastal wetland stratigraphic sequences are strongly depen-
dent on the accommodation space created by RSL change
[7–9]. The most spatially and temporally complete coastal wet-
land stratigraphic archives are found along coastlines with grad-
ually rising RSL during the Holocene [10]. In contrast, coast-
lines that have experienced an RSL fall [11] from a mid-
Holocene highstand have fragmented and spatially limited
coastal wetland stratigraphic records.

Holocene coastal wetland stratigraphy can preserve evidence
of RSL change related to prehistoric earthquakes and tsunamis
[8, 12–15]. The societal and scientific value of prehistoric re-
cords of the largest, most infrequent subduction zone earth-
quakes and their tsunamis was underscored by the devastating
impacts of the 2004 Indian Ocean and 2011 Tohoku events [16,
17]. If seismic and tsunami hazard assessments in these regions
had fully considered coastal geologic evidence for past subduc-
tion zone earthquakes and tsunamis, losses might have been
substantially reduced [17, 18]. One of the most widely applied
methods of reconstructing subduction zone earthquake histories
on millennial timescales employs coastal wetland stratigraphic
sequences to identify sudden changes in RSL during coseismic
vertical deformation of the coast [12, 13, 19–21]. However, the
time spans and completeness of prehistoric earthquake records
varies widely among subduction zone coastlines.

In this review, we discuss the factors that drive patterns in
Holocene regional RSL change along subduction zone coasts
and how these patterns influence the formation of coastal wet-
land stratigraphic sequences likely to preserve evidence of
past subduction zone earthquakes. We contrast the relatively
complete Holocene stratigraphic archives of prehistoric earth-
quakes along the Cascadia subduction zone, where RSL has
been gradually rising during the Holocene, with incomplete
and fragmentary records from the subduction zone coasts of
Sumatra, Chile, and Japan, where late Holocene (last 4 ka)
sea-level fall has limited the preservation of prehistoric earth-
quake evidence. Considering stratigraphic records of
coseismic vertical deformation in the context of Holocene
RSL change reveals the most likely time periods and locations
for the preservation of millennial-scale records of past earth-
quakes along various subduction zone coasts.

Spatial Variability of Holocene Relative Sea-Level
Change

The largest contributor to Holocene RSL change was the melt-
ing of the northern hemisphere ice sheets (Fig. 1) [22], which

both increased ocean volume and triggered isostatic responses
of the solid earth [23, 24]. At the beginning of the Holocene
(∼12 ka), eustatic sea level was ∼60 m lower than in the
present, due largely to the remaining Scandinavian and
Laurentide ice sheets as well as a greater-than-present
Antarctic Ice Sheet volume [25]. Rates of eustatic RSL rise
slowed by ∼7 ka following the terminal melting of the
Laurentide Ice Sheet [26]. Between ∼7 and 2 ka, only a few-
meter sea-level equivalent of ice-sheet mass loss occurred
[25], mostly from the Antarctic Ice Sheet [27].

The spatial expression of RSL change during the Holocene
varies among regions once covered by the northern hemi-
sphere ice sheets (Fig. 1a; near-field), located at the periphery
of these ice sheets (Fig. 1b; intermediate-field), and regions
distant from these major glaciation centers (Fig. 1c–e; far-
field) [1, 11, 28].

Near-field regions are strongly influenced by local ice
(un)loading, which produces vastly contrasting patterns in
RSL change during the Holocene. Near the center of for-
mer northern hemisphere ice sheets (e.g., Hudson Bay), the
rate of glacio-isostatic uplift exceeded the rate of eustatic
sea-level rise during the Holocene [29]. But at the margins
of the ice sheet (e.g., western Vancouver Island Canada),
the rate of eustatic sea-level rise outpaced glacio-isostatic
uplift until ∼7 ka, after which glacio-isostatic uplift became
the dominant control on RSL, resulting in a mid-Holocene
highstand [30].

RSL change in intermediate-field regions is influenced
by the formation and collapse of the proglacial forebulge
[31]. Ice loading during the last glacial maximum (∼26 ka;
LGM) caused the migration of mantle material away from
ice load centers, resulting in uplift of a forebulge at the
periphery of ice sheets [31, 32]. Progressive melting of
the ice led to the collapse of this forebulge (glacio-
isostatic subsidence) as mantle material returned to the for-
mer load centers [33]. In intermediate-field regions (e.g.,
US Atlantic and Pacific coasts), isostatic and eustatic ef-
fects worked in tandem to produce rapid RSL rise up to
∼7 ka BP [34]. After ∼7 ka, the eustatic input diminished
and continuing glacio-isostatic subsidence became the pre-
dominant control on RSL rise [3, 28].

In far-field regions distant from northern hemisphere ice
sheets (e.g., Atlantic and Pacific coasts of South America),
eustatic, hydro-isostatic, and glacio-isostatic processes are
dominant [35, 36]. In these regions, the RSL pattern is char-
acterized by a rise to a mid-Holocene sea-level high- or still-
stand between ∼7 and 5 ka [37, 38]. The fall in RSL to present
was produced when the rates of eustatic sea-level rise was
exceeded by the combined effects of hydro-isostatic loading
of the continental shelf (continental levering) and water mi-
grating away from far-field equatorial ocean basins in order to
fill space vacated by collapsing forebulges (equatorial ocean
siphoning) [1, 2].
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The Preservation of Stratigraphic Evidence
of Earthquakes During Long-Term RSL Change

Prior knowledge of the Holocene RSL history of a sub-
duction zone is the first step in deciding which sites to
target to reconstruct earthquake histories from coastal
wetland stratigraphy. Increasing tidal inundation during

gradual (<3 mm/year) RSL rise leads to increased sed-
iment deposition and the growth and aggradation of
wetland vegetation [39]. However, if RSL rises too fast
(>10 mm/year), organic matter contributions from coast-
al vegetation are reduced, accelerating erosion and re-
placing coastal wetlands with subtidal environments [9,
40, 41]. RSL fall starves coasts of sediment and limits
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Fig. 1 Subduction zones referenced in this paper and their proximity to
the major ice sheets of the Last Glacial Maximum ∼26 ka. A blue
rectangle denotes the near field (a) portion of the Cascadia subduction
zone, while a green rectangle denotes the intermediate field (b) portion.
Subduction zones in the far-field regions of Sumatra (c), Chile (d), and
Japan (e) are outlined in red. The approximate spatial extent of the major
ice sheets at ∼21.5 ka (lighter color) is redrawn after Kleman and
Hättestrand [93], Anderson et al. [94], Dyke [95], Clague and James

[96], and Moreno et al. [97]. Eu is Eurasian, La is Laurentide, Co is
Cordilleran, Pa is Patagonian, and Ar is Antarctic. In the detailed view
of the Cascadia subduction zone, the near-field (western Vancouver
Island) and intermediate-field (southern Washington and central
Oregon) RSL regions are outlined by rectangles. All subduction zone
regions (in italics) and paleoearthquake study site locations (shown by
red circles) referenced in the text and plotted in Figs. 4, 5, 7, and 8 are
labeled on the detailed view of each subduction zone
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coastal wetland formation to protected estuaries, barrier
lagoons, and deltas where sediment supply is relatively
high [42].

The accommodation space created by gradual
(<3 mm/year) RSL rise promotes the formation of thick
(Fig. 2a) sequences of coastal wetland stratigraphy [9,
41]. The most complete stratigraphic records with
coseismic subsidence contacts are formed when gradual
RSL rise enables coastal wetland soil O horizons sub-
merged by abrupt coseismic subsidence to be quickly
capped by sediment, protecting the contacts from soil
development, bioturbation, and erosion (Fig. 3a) [13,
20, 43–45]. As the coast gradually uplifts during the
interseismic period, gradual RSL rise continues to pro-
vide the accommodation space for sediment to aggrade
and, eventually, for vegetation to form on the new wet-
land surface [46]. Coseismic uplift is preserved in the
opposite manner (e.g., tidal flat mud overlain by a soil).
As long as the uplifted surface remains in the intertidal
zone, or in wet, boggy supratidal conditions with a high
ground water table, gradual long-term RSL rise will
provide the accommodation space for sediment and or-
ganic matter to aggrade without a significant interrup-
tion in sedimentation [47, 48]. Gradual long-term RSL
rise creates stacks of well-preserved wetland soil O ho-
rizons buried by tidal flat mud (subsidence) or tidal
muds overlain by wetland soil O horizons (uplift) that
can be dated by radiocarbon to reconstruct the earth-
quake history at subduction zone sites [44, 49–52].

At coastlines that experience long-term RSL fall, sim-
ilar coseismic subsidence or uplift results in minimal
burial of wetland soil O horizons and tidal flat mud be-
cause of limited accommodation space and low sedimen-
tation rates [52–56]. Coastal wetland stratigraphic se-
quences that form under RSL fall are thin (Fig. 2b) and
discontinuous with many unconformities. As the coast
emerges out of the tidal frame during RSL fall, coastal
wetlands are progressively stranded [42] and the upper
sediment of emerged wetland stratigraphy is eventually
bioturbated, oxidized, and incorporated into upland soils
(Fig. 3b). Emergence also leads to sediment erosion that
further obscures stratigraphic contacts [8, 53, 56].
Evidence of prehistoric earthquakes in such emerged
wetland sequences is typically difficult to correlate
among cores or sites [53].

Regional RSL and Earthquake History

In order to demonstrate the influence of differing rates of
Holocene RSL change on the length and completeness of
prehistoric earthquake records, we highlight RSL changes
and earthquake histories at near-, intermediate-, and far-
field regions at four subduction zones. Our near-field
(western Vancouver Island) and intermediate-field (south-
ern Washington, and central Oregon) regions are located
along the Cascadia subduction zone. Cascadia’s RSL his-
tory has been reconstructed using sea-level index points
that record the position of RSL over time [57]. Each index
point contains information about its (a) geographic loca-
tion; (b) calibrated radiocarbon age and error (2σ); and (c)
elevation of former sea level and its vertical error (2σ)
[58]. Sea level index points for Cascadia are listed in a
comprehensive RSL database for the Pacific coast of cen-
tral North America [59].

To estimate rates of RSL change for the Cascadia sub-
duction zone, we use a spatio-temporal empirical hierar-
chical statistical model, as in Kopp et al. [60]. The spatio-
temporal model fits all index points simultaneously, not
on a site-by-site basis. Details of the model are described
in Online Resource 1.

Examples of subduction zones in far-field regions in-
clude the Sunda (northern and western Sumatra), Chile
(central and southern Chile), and Japan (Sendai Plain,
Tokyo metropolitan area, and eastern Hokkaido) subduc-
tion zones. Due to the absence of RSL databases in our
far-field regions, we relied on glacio-isostatic adjustment
model predictions to characterize RSL change over the
Holocene [33, 61]. For each far-field region, we gener-
ated sea-level predictions using two GIA models—the
ICE-6G_C (VM6) model [33] and the ICE model [61].

Fig. 2 Annotated photos of representative stratigraphic sections from the
coasts of southern Washington (mid- to late-Holocene RSL rise) (a) and
south-central Chile (late-Holocene RSL fall) (b). Buried soil O horizons
represent prehistoric subduction zone earthquakes
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The differences in the RSL predictions during the
Holocene from these two models is driven predominate-
ly by differences in the deglaciation histories of the
Antarctic Ice sheet, with a larger total ice-volume equiv-
alent sea-level contribution (26 m versus 13.6 m) [62]
and melting continuing until 1 ka (compared to 4 ka) in
the Bradley et al. [61] model (Online Resource 2). For
the ICE model, we generated predictions for a suite of
earth models to look at the impact of changes in litho-
sphere thickness and upper and lower mantle viscosity
on RSL predictions [61]. Rates of past RSL change
were derived from the GIA predictions by calculating
the numerical derivative of each curve over 1-ka time
intervals for an upper and lower range of rate values.

Within regions near-, intermediate-, and far-field from
northern hemisphere ice sheets, we selected the longest
records of prehistoric earthquakes preserved in coastal
wetland stratigraphy to compare to the RSL histories
and models. The selected studies used a standard set
of criteria [13] to support their interpretations of
coseismic and interseismic origin for the changes in
coastal wetland stratigraphy. The key criteria used were
the lateral extent of sharp stratigraphic contacts; the
suddenness and amount of coseismic vertical deforma-
tion; the synchroneity of coseismic vertical deformation
among regional sites; and the coincidence of tsunami
deposits with sudden changes in stratigraphy. To plot
prehistoric earthquake histories against RSL histories
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permission from Elsevier
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and models, we used calibrated radiocarbon age ranges
(2σ) for earthquakes reported in the original publica-
tions (Online Resource 3).

Case Study: Cascadia Subduction Zone

Because the Cascadia subduction zone (Fig. 1a, b) has
not experienced a great earthquake since the M8.8–9.2
Cascadia earthquake in AD 1700 [63, 64], we must rely
on paleoenvironmental reconstructions of changes in
RSL to reconstruct the patterns, timing, and magnitudes
of past earthquakes. Fortunately, the creation of sedi-
ment accommodation space by gradual Holocene RSL
rise [7, 59, 65] along Cascadia’s coasts has produced
unusually complete stratigraphic archives of coseismic
subsidence spanning thousands of years [12, 20, 45,
50, 51, 65–67]. There are, however, significant differ-
ences in the lengths of prehistoric earthquake records at
sites formerly covered by LGM ice sheets, compared
with those located south of the ice margin (Fig. 1a, b).

Near-Field Region Sites at Cascadia

RSL history in near-field regions closest to the subduc-
tion zone (e.g., western Vancouver Island) was strongly
controlled by ice-unloading history [68], resulting in
continuous RSL fall (∼1 mm/year) following a sea-
level highstand at around 6 ka (Figs. 1a and 4a, b)
[59]. This RSL fall limited accommodation space,
restricting the formation of coastal wetlands conducive
to the preservation of stratigraphic evidence of earth-
quakes to the last 1 ka [69]. As a result, widespread
stratigraphic evidence of coseismic subsidence is limited
to the AD 1700 great earthquake [70–72]. One of the
few longer records (∼2500 years) of coseismic subsi-
dence comes not from a coastal wetland, but from a
study by Hutchinson et al. [73] that identified three
tsunami deposits in a lake coincident with changes in
lake salinity. Salinity changes were inferred to be the
result of coseismic subsidence lowering the bedrock sill
of the lake sufficiently for it to be breached by tidal
waters in the decades to centuries following the earth-
quakes (Figs. 1a and 4c). Other stratigraphic records of
coseismic subsidence on the coast of western Vancouver
Island may have been eroded or elevated above sea
level due to long-term net uplift, although older, elevat-
ed records have not been reported [70].

Intermediate-Field Region Sites at Cascadia

At Cascadia sites in the intermediate-field region (e.g.,
southern Washington and central Oregon), the combination

of eustatic sea-level rise and local isostatic subsidence re-
sulted in rapid RSL rise (>10 mm/year) prior to ∼7 ka. This
was followed by slower rates of rise (<3 mm/year) to the
present as eustatic sea-level rise slowed and glacio-
isostatic subsidence became the dominant control on RSL
history (Figs. 1b and 5a–d) [59]. Continuous gradual RSL
rise created ample accommodation space for the formation
of widespread coastal wetlands, which, when suddenly
submerged during earthquakes, produce millennial-scale
stratigraphic records of coseismic subsidence [20, 50, 51,
66, 74, 75].

In southern Washington, the oldest coastal wetland
deposits are dated to ∼5.3 ka [49]. RSL rise at rates of
<3 mm/year thereafter allowed sediment and wetland
vegetation to aggrade [76] and stratigraphic evidence of
coseismic subsidence to be preserved [49, 77]. Up to ten
instances of coseismic subsidence over the last ∼5.3 ka
are recorded in the coastal stratigraphy at John’s River
and Willapa Bay (Figs. 1b and 5e).

Sites along the central Oregon coast contain the lon-
gest stratigraphic records of coseismic subsidence pre-
served in a subduction zone setting [20, 50]. The RSL
history here is similar to that of southern Washington,
but at multiple sites in central Oregon (e.g., Coquille
River, Sixes River), gradual (<3 mm/year) RSL rise be-
gan earlier (∼7 ka), (Figs. 1b and 5b, d). This is likely
due to long-term tectonic uplift on upper plate faults and
folds in the area, which would have slowed rates of RSL
rise in comparison to southern Washington (Fig. 6a, b)
[78, 79]. The early onset of low rates of RSL rise created
the accommodation space necessary to preserve a 7-ka-
long stratigraphic record of 12 earthquake subsidence
events at the Coquille River, Oregon [20], and a similar
6-ka-long record of 11 earthquakes at the Sixes River,
Oregon (Fig. 5f, g) [50].

Preservation of Earthquake Stratigraphy
in Far-Field Regions

Subduction zone coastlines in far-field regions that have
recorded an RSL highstand during the Holocene, such as
the Sunda, Chile, and Japan subduction zones, preserve
only geographically limited, discontinuous stratigraphic
records of coseismic subsidence or uplift (Figs. 1c–e,
7a–f, and 8a–h) [8, 14, 15, 21, 53–56, 80, 81]. The
RSL history at far-field sites has generally restricted
stratigraphic records of coseismic subsidence or uplift
to brief time windows of preservation during (1) periods
of slow (<1.5 mm/year) RSL rise prior to the mid-
Holocene highstand (6–3 ka), which created accommoda-
tion space, or (2) the last 1–3 ka when RSL was within
∼2 m of modern sea level, and therefore stratigraphic
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sequences have remained within the tidal frame (Great
Diurnal Range is between 1 and 2 m at all our far-field
sites) [82].

Sunda Subduction Zone

In northern and western Sumatra, GIA models predict high
rates (>5 mm/year) of RSL rise from ∼12 to ∼7 ka, follow-
ed by slowing rates of rise (<1 mm/year) to an RSL
highstand of <1 m (northern Sumatra) and ∼3 m (western
Sumatra) between 6 and 3 ka, and then gradual (<1 mm/
year) RSL fall until present (Fig. 7a, b). At two sites along
the northern Aceh coast of Sumatra, Grand Pre et al. [83]
and Kelsey et al. [56] document stratigraphic evidence of
three instances of coseismic subsidence between 7 and
3.8 ka (Figs. 1c and 7d). This window of preservation
coincides with a period of gradual RSL rise (<1 mm/year)

that created the accommodation space necessary for the
mangrove-vegetated coastal plain to aggrade and preserve
stratigraphic contacts marking repeated, coseismic subsi-
dence and burial by tidal mud (Fig. 7a) [56]. Prior to
7 ka, rates of RSL rise were too high (>5 mm/year) for
coastal wetland stratigraphy to form and be widely pre-
served [56]. A similar mid-Holocene record of coseismic
subsidence was documented in western Sumatra in a low-
land near Padang, where Dura et al. [8] found evidence of
two instances of coseismic subsidence during a period of
stable RSL between 4 and 3 ka following the mid-
Holocene highstand (Figs. 1c and 7b, e) [8]. Despite coral
microatoll evidence of repeated coseismic vertical defor-
mation in the late Holocene [84–86], no coastal strati-
graphic evidence of deformation has been documented,
probably because of erosion of coastal sediments during
late Holocene RSL fall.
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Chile Subduction Zone

In central and southern Chile, GIA models predict high
rates (>5 mm/year) of RSL rise from ∼12 to ∼7 ka,
followed by slowing rates of rise (<1 mm/year) to an
RSL highstand of ∼3 m (central Chile) to ∼8 m (southern
Chile) between 7 and 5 ka, and then gradual (<1.5 mm/
year) RSL fall until present (Fig. 7c and 8a). Dura et al.

[54] found a mid-Holocene record of repeated coseismic
uplift in a former coastal marsh at Quintero north of
Valparaiso, central Chile, which formed during gradual
(<1 mm/year) RSL rise leading up to the mid-Holocene
highstand, the shorelines of which now lie ∼2 km inland
(Fig. 1d). Beneath this remnant marsh, stratigraphy shows
evidence of six instances of coseismic uplift between
6.2 ka—when rising RSL slowed and marsh sedimenta-
tion began—and 3.7 ka—when RSL fall stranded the
marsh beyond the reach of tides (Fig. 7c, f) [54].
Although multiple historical >M8 earthquakes producing
coseismic uplift have occurred along the central Chile
coast, no stratigraphic evidence of the events has been
documented [54].

In southern Chile, coastal stratigraphic records of past
earthquakes are limited to the last 2 ka (Fig. 8a) [53, 87,
88]. At the Maullin estuary, Cisternas et al. [14] docu-
mented a ∼2-ka-long record of seven buried soil contacts
marking repeated coseismic subsidence (Figs. 1d and 8e).
At Chiloe Island, Garrett et al. [21] found a ∼1-ka-long
record of coseismic subsidence that correlated with the
four youngest subsidence events at Maullin (Fig. 1d).
The stratigraphic sections at both sites in southern Chile
are <1.5 m thick and preserved within the ∼2-m modern

�Fig. 5 Selected relative sea-level (RSL) reconstructions from southern
Washington (a) State, USA, and central Oregon, USA (b) (sites included
in RSL reconstructions can be found in Engelhart et al. [59]. All y-axes
are RSL (in meters relative to present). Radiocarbon ages were calibrated
at 2 σ. X-axes are in 1000 calibrated years before present (ka). Blue curve
shows the Gaussian process model fit to the data, with the green dashed
line representing 1σ uncertainties. c, d 1 ka average rates of RSL change
calculated from the Gaussian process model from a and b. Blue shaded
area represents 1σ uncertainties. Vertical dashed line denotes the
beginning of preservation of earthquakes records. Horizontal dashed line
shows the approximate rate below which stratigraphic records begin to be
preserved. Gray shaded area beginning at ∼5.3 ka (c) and ∼7 ka (d)
highlights the period of wetland formation and preservation. eAge ranges
for ten instances of coseismic subsidence at selected sites in southern
Washington including Willapa Bay and John’s River [49, 77]. f Age
ranges for coseismic subsidence events at the Coquille River (12 earth-
quakes) [20] and g Sixes River (11 earthquakes) [50]. Question marks
denote undated earthquakes

6-7 ka

1 2 3

3-4 ka

-0.5 0 0.5 1 1.5

a b

Southern 
Washington
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Fig. 6 a Plots of the rate of RSL
change between 6 and 7 ka
generated by the spatio-temporal
empirical hierarchical model for
sites along the Cascadia
subduction zone. Diamonds
represent the sites used to produce
the RSL rise field. Data used in
the model can be found in
Engelhart et al. [59]. b RSL rise
field (showing RSL rates)
between 3 and 4 ka
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tidal range. However, Garrett et al. [21] noted the occur-
rence of high marsh soils at elevations below modern
mean sea level, implying RSL rise during the last 1 ka.
This is in contrast to the late Holocene emergence noted
in studies to the north [14, 53, 55, 87–89] and in our GIA
predictions. Garrett et al. [21] suggest that net tectonic
subsidence of Chiloe Island, or glacio-isostatic subsidence
related to the Patagonian Ice Sheet and not considered in
current GIA models, may have caused RSL rise during
the last 1 ka.

Japan Subduction Zone

At the Sendai Plain, the Tokyo metropolitan area, and
eastern Hokkaido, Japan, GIA models predict high rates
(>5 mm/year) of RSL rise from ∼12 to ∼7 ka, followed
by slowing rates of rise (<1 mm/year) to an RSL

highstand of ∼3 m between 6 and 4 ka, and then gradual
(<1 mm/year) RSL fall until present (Fig. 8b–d). The
prograding beach ridge sequences that formed during late
Holocene RSL fall in the Sendai Plain contain limited
evidence of coseismic vertical deformation (Fig. 1e and
8b) [17]. Sawai et al. [17] documented evidence of
coseismic subsidence associated with two tsunami sand
beds (dated to ∼1.5 and ∼1 ka) preserved within the
stratigraphy of a sheltered lowland in Odaka (Fig. 8f).
Further south, in the Tokyo metropolitan area, strati-
graphic records of coseismic vertical deformation are
limited to the last ∼1 ka (Fig. 8c). At the Miura
Peninsula, Shimazaki et al. [90] found evidence of three
instances of coseismic uplift that abruptly changed a
shallow subtidal bay environment into a tidal flat
(Fig. 8g). The three uplift events occurred during three
historical Kanto earthquakes in AD 1923, 1703, and
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1060–1400. Similar to southern Chile, the stratigraphic
s e c t i on s i n t h e Senda i P l a i n and th e Tokyo
Metropolitan area are within the modern tidal range
(∼1.5 m).

Stratigraphy beneath multiple coastal wetlands fringing es-
tuaries in eastern Hokkaido, northern Japan, contains evidence
of up to six postseismic uplift events in the last 3 ka (Figs. 1e
and 8h [15, 81, 91, 92]. Each uplift event is marked by a
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change between a tidal flat mud and a freshwater marsh, sig-
naling at least 1 m of slow, postseismic uplift following earth-
quakes larger than any in the region’s written history [91, 93].
The tide gauge records in eastern Hokkaido, northern Japan,
display submergence of 8–10 mm/year over the last
∼100 years [81]. This pronounced subsidence over the twen-
tieth century has been ascribed to interseismic strain accumu-
lation that has not been reversed by recent earthquakes [81].
Infrequent postseismic uplift may help reconcile eastern
Hokkaido’s twentieth century submergence with its strati-
graphic evidence of long-term RSL fall during the Holocene
[81, 93].

Conclusions

As geologists have conducted prehistoric earthquake studies
at subduction zone coasts with variable long-term RSL histo-
ries, it has become clear that complete, millennial-scale re-
cords of prehistoric earthquakes are rare. The length and com-
pleteness of coastal stratigraphic records of past earthquakes is
linked to the accommodation space provided by gradually
rising (<3 mm/year) long-term RSL, assuming sufficient sed-
iment supply. Gradual RSL rise produces the accommodation
space necessary for the formation and preservation of coastal
wetland soils, whose upper or lower stratigraphic contacts
serve as the most effective markers of coseismic vertical de-
formation. Faster (>3 mm/year) rates of rise generally prevent
the formation of widespread coastal wetlands, while falling
RSL leads to erosion of coastal wetland stratigraphy.
Understanding the interplay among RSL change and coastal
processes along subduction zones will help focus field re-
search and improve interpretations of stratigraphic evidence
of coseismic subsidence or uplift.

& At subduction zone sites in near-field regions (i.e., western
Vancouver Island), RSL fall over the last ∼6 ka has limited
stratigraphic evidence of past earthquakes to the last 1 ka.

& At subduction zone sites in intermediate-field regions (i.e.,
southern Washington and central Oregon), gradual RSL
rise over the last 7–5 ka has produced widespread coastal
wetland stratigraphy that contains the longest (>5 ka) doc-
umented stratigraphic records of repeated coseismic sub-
sidence. Subtle differences in the onset of gradual
(<3 mm/year) RSL rise influence the length of stratigraph-
ic records of coseismic subsidence in central Oregon
(∼7 ka) and southern Washington (∼5 ka).

& At subduction zone sites in far-field regions such as
Sumatra and central Chile, gradual (<1.5 mm/year) RSL
rise leading up to the mid-Holocene highstand (6–3 ka)
provided the accommodation space necessary for coastal
wetlands to form and for prehistoric earthquake evidence
to be preserved. In southern Chile and Japan, prehistoric

earthquake records are limited to the last 1–3 ka, when
RSL was within 2 m of modern sea level, and thus within
the tidal frame, preserving geographically limited coastal
wetlands despite slowly falling RSL. Subtle differences in
RSL influence the length of these far-field records.
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